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Abstract. In this paper we show that the Cauchy problem for the one-di- 
mensional heat equation, though non-well posed in the sense of Hadamard, can be 
solved numerically. It is shown that if we admit as solutions functions for which 
an a priori bound is assumed in some finite rectangle in x - t space then the solution 
depends Ho1lder continuously upon the given Cauchy data. The specific numerical 
scheme developed also exhibits the Holder continuity so that we are sure of a 
meaningful numerical method. 

1. Introduction. In this paper we are mainly concerned with obtaining a numeri- 
cal solution to the non-well posed Cauchy problem defined by 

Wt(x, t) = WT$(X, t) 

W(O, t) = ?(t) 

WX(O, t) - (t) 

Where WV is defined in the region R satisfying the inequalities 

O < x < 1, 0 < t < 1. 

Though the problem as stated is not well posed* in the sense of Hadamard [2], 
we can, by the imposition of an a priori bound B, that is, IW (x, t I < B in some 
finite rectangle in (x, t) space, show that the solutions depend H6lder continuously 
upon the prescribed Cauchy data. H6lder continuous dependence of the solution 
upon the data means: There exist constants X, a, and M with a such that 0 < a ? 1, 
for which iW(x, t) i < K l.u.b.o<t<j | 0(t) Iajjlya. In the definition we have as- 
sumed 61(t) --0, for convenience, which is no loss of generality. It will be shown 
that the assumption T I(x, t) I < B in real space permits us to obtain a bound for 

TW(z, t) I < 3I in (z, t) space, where z is the extension of x into the complex domain. 
The existence of a solution to the above Cauchy problem is insured by a theorem 

due to Holmgren [5], [8]. He has shown that a necessary and sufficient condition 
for the existence of a solution is that the function g(t) defined by 

I ,t0 f-r ) dr 
g(t) = ~(t) + ] )d 

-\/1Vr ? t- 
be a function of class two [4]. Functions of class two are functions which are differ- 
entiable to any order and whose derivatives satisfy a growth condition of the type 

d g < M1(2n) I 
i It I = 2 it 

Received February 13, 1963. 
* Consider U(x, t) = eikt cosh -\/ikx. Ut = Uxx is satisfied, and U(O, t)= eikt and Ux(O, t) = 0. 

Thus I U(O, t) I _ 1, but U U(x, t) I = I cosh V,/k x I exp [N/2kx/2j so the solution tends to 
infinity as k tends to infinity for bounded (x, t) domains. 
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with M and R being two fixed positive numbers. Thus the class of analytic functions 
is a subset of the functions of class two. 

The uniqueness of the solution to our Cauchy problem is guaranteed by the 
Holmgren Uniqueness Theorem for linear partial differential equations [4]. 

John [6] has pointed out that for practical computational purposes the Holder 
continuity would be a sort of minimal requirement. That is to say, having solutions 
depend continuously upon the prescribed data would not lead to useful numerical 
methods if the continuity were only of the weak "logarithmic type" (e.g., if ul and 
u2 are solutions to the one-dimensional heat equation with Cauchy data fi and f2 

such that if Ifi - f2 I < E then I Ul-U2 I < A/[log 1/E] where A and a are con- 
stants). Problems for which the numerical solutions satisfy the "H6lder condition," 
under the assumption of the existence of constants K and a, are called 
"well-behaved". 

The significance of the "well-behaved" property is that the number of significant 
digits in our computed solution is proportional to the number of significant digits 
in our data measurements. Hence, if we wish to improve the accuracy of the numeri- 
cal solution we need not improve the accuracy of the measured data to an un- 
reasonable number of significant places. 

For convenience we outline our procedure. We consider the problem of generat- 
ing approximate solutions for the Cauchy problem when the Cauchy data is given 
at some discrete set of points (0, ti) with a measurement error. The existence of a 
numerical scheme for which the approximate solution has the "H6lder property," 
and is thus "well-behaved," is demonstrated. 

The representation 
n=oo 2n 

W(X, t) = 
X 

4~(n)M 
n=O (2n) ! 

which is a solution to the Cauchy problem in the special case t' (t) = 0, we note, 
can be written as 

k=+oo 

W(x, t) = E Cke ik, cosh ikr x. 
k=-oo 

Here, +(t) has been expanded by its Fourier series representation, 
k=+oo 

+(t) = Z Ca 
k=-so 

We then proceed to consider the case when +(t) is known precisely on all of the 
interval (0, 1) and derive expressions which are finite representations for +(t) 
(i.e. truncations) called 4N(t). We show that Xv(t) converges to +(t) as N tends to 
infinity. This, of course, means that we have to generate a method for approximating 
the Fourier coefficients Ck . We call the error in the computed solution, when there 
is no inherent data error, the truncation error. Next, if instead of knowing ?(t), 
and thus ON(t) precisely on (0, 1), we only know it at a discrete set of points (0, ti) 
with a given measurement error, we want then to represent the exact solution by 
means of appropriate approximation functions. The approximation scheme makes 
use of the Lagrange Interpolation Formulae and remainder estimates. The scheme 
demonstrates the importance of an appropriate choice of spacing for the data points, 
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as well as the necessity of appropriately choosing the number of points at which the 
data is given. Minimizing the error estimates with respect to certain parameters 
of the approximation scheme finally leads us to the fact that the solution of the 
numerical problem is "well-behaved," under the assumption of an a priori bound 
on the solution in a rectangle in (x, t) space. That is, if W is the exact solution and 
WA is the approximation to this solution, then, there exist constants C, and : with 
o < j < 1 such that I W - WA I < C0E, where E is the precision of our measure- 
ments. 

A special example is presented and the numerical results obtained by the above 
method are compared to the solution of an equivalent boundary value problem. 

The main tools used in deriving the Holder continuity are the Sobolev lemma of 
functional analysis [9] and the Cauchy integral formula for analytic functions. 

2. Part I. Consider the Cauchy Problem 

Wt = WXX 

W(O, t) = 0(t) 

W(O) t) = 0 

where W is defined in R as before. 
A formal solution to (1) is given by 

oo 2n 

(2) V(x, t) = E ( )! M. 
n O (2~n)!1 

We note that (2) implies 

(3 ) <gw(n) )= 
2 

V(X, t) 

Making use of the well known fact that the solutions to the heat equation are 
analytic in the space variable and assuming I V(x, t) I < B in R one can show [3] 
that I V(z, t) I < M in a suitable cube in (z, t) space. Thus, 

(n ,() d2n V(x,) = (2ni) V ~~l-(2 t)d 
= 

) Ox2 z= 
2,iri 

~ 2+ 

We now make an additional assumption that +(t) is such that 

(5) <,(n)(0) = ,(n)(j) = 0 for all n ? 0. 

In [3] it was shown that condition (5) is no serious restriction in that all it does is 
to reduce the domain in which the Holder continuity holds. This was proved by 
constructing a suitable C' function having the property that this function along 
with all its derivatives vanishes for t = 0 and t = 1, and on a compact subset of t 
belonging to (0, 1) this function is identically 1 ([3], Chapter 4). 

We note that the condition Wx(O, t) = 0 is also of no consequence, for it is not 
difficult to show that if (1) has the H6lder continuous property then so does the 
problem with Wx(O, t) = 41(t), albeit with different constants. In addition it is 
shown that the solutions can be continued as even functions of x across the bound- 
ary x = 0 ([3], Chapter 5). 
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Returning now to the function p(n') (t), define the L2 norm of +(t) in 
the usual way, 

(6) 0(8)(t) 112 = f ( (t))2 dt = j t)(2(t) dt = ( 2, n(n)) 

where (f g) denotes the scalar product of the functions f and g in the usual sense. 
Using the Cauchy-Schwarz inequality we have 

(7) I1 </,(n)(t) 112 < 11 , (2n) 

where 1 1, and (2n) can be estimated by using (4). From (2) we have, 
00 2 n 

(8) 1V(xtl <I Z X (n) 
n-O (2n)! 

Now if +(t) belongs to C0O[, 1], and (n)() = -(n)(1) = 0 for all n > 0, then by 
Sobolev's lemma 

(~ ~ ~ ~~~~ ), |n ( t) 12 < 2 || +(8)(t) 112 + 2 11 <g(n~l)(t) 112. 

Substituting from (9) into (8) it can be shown that 

(10) 1 V(x, t) | K Il l (t) Il11/2411/2 

or 

(11) V(x, t) < K maxt I ?(t) 1l/2Ml/2 

with K a constant. Thus (11) is a statement of the H6lder continuous dependence 
of the solution on the Cauchy data +(t), valid in 

I? = o ti 0 < X< v< 1g 

3. Part II. We now proceed to construct a numerical procedure which is well- 
behaved. That is, we have to demonstrate the existence of a numerical scheme 
having the H6lder property. 

Consider 

k==+oo 

(12) 1(X, 1) _ E Cketkirt cosh -\/ikw x. 
k==-oo 

It is easy to verify that (12) satisfies the Cauchy problem (1) where +(t) has been 
expanded in a Fourier series on t belonging to [0, 1] 

k=+oo 

(13) 4(t) Z Ck e"kt V(0 t). 
k=-oo 

Certainly, the fact that O(t) is a function of class two, guarantees the existence 
of the Fourier series, where the Fourier coefficients Ck are defined by 

(14) Ck = f P(t)eikt dt. 
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Define VN(x, t) by 

(15) V7(x t) = Z Ck ei cosh V/ikr .x 
k=-N 

and 
k=+N 

(16) ON(t) E Ck e 
k=-N 

Once again it is simple to show that if || V(x, t) || has an upper bound 11, then 
VN(X, t) 1I has the same upper bound. 

Making use of Bessel's Inequality we have 

(~~~~ ~ ~ ~~~~~~~~ 17X ) 12 (17) Z CkIICOShX/iAkrX I' ?< f Vxt dt = 11V(x,t l2 

(x fixed). Applying Parseval's Equality, 

(18) | VN(X, t)12 dt = Z Ck 2 | cosh -\/'kr x 12 = II VN(X, t)|2. 
Ikl <N 

Thus, 

(19) || VN(X, t) 112 < V(x, t) 12 < 1 

or 

(20) VN(Xj t) $ M. 

Finally, applying an extension of the Sobolev Lemma [7], we have that 

(21) VN(X t)l < constant max -2 
, M M112. 

Let us assume that +(t) is known precisely on all of t belonging to [0, 1]. Applying 
integration by parts "n" times to (14) and using (4) we have 

(22) 1 Ck (2n) M 

Consider now 

(23) | +(t) - (PN(t)l = Z C eit ? E (2n)! Al 
Ikl N+?1 Ikl IN+1 (irk)n 

Using Stirling's expansion for n! and minimizing (2n) 
1 

with respect to n for fixed 
(irk)n 

k, we find that 

(24) ZAlk e 
(kl ?N+1 (e - 1) exp [V1,x(N+ 1)/el 

which shows that the truncation error tends to zero as N tends to infinity. 
Consider now the case when q5(t) is known at some discrete set of "s" points 

tj on 0 < t < 1. Let us find an approximation, Ck, to the actual Ck,'s, such that 
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as the number of points j, at which we know O(t) becomes "dense" in (0, 1), 
Ck -- Ck. 

Define 
1 

(25) k= f (t) eikrt dt 

where cf(t) is such that 

(26) 4(tj) = 4(tj), j 0, 1, . 

Define 

(27) 4(t) = @4o(t) 

where 4(t) is a piecewise continuous function such that 

(28) (Di(tj) f4(tj) (i - 1)h ? t h j 
? 

Oh* 
(28) 1(t~)- '~0 Aih t?<(i -1)hf 

where h is to be determined. By the Lagrange Interpolation Formula [10], a function 
4i(t) interpolating to a function q5(t) in the points t = tj(j = 0, * s) is given by 

(29) 1( t) - E 4(t )w(t) 
k=O (t-tk)wO(tk) 

where 

(30) W(t) = (t - to) .(t. - t), 

and 
s s 

(30') o (tj) = x T (tj - tr) 
i=o r=o 

rp~j 

with the remainder q c(t) - 4!(t) I given by 

(31) W(+)t [t=o (t -tj): 
I 0(t) -4(bij 

= 
(s + 1)! 

where t is such that to < _ t? . Now (25) may be written as 
h 2h 

(32) Ck f dt + f ?2 e-k tdt+ 

to a finite number of terms. Consider then 
rh r2h 

(33) I Ck -k |I- (t) I dt + f h fM - (2(t) I dt + 

The ith integral in this sum, making use of Stirling's approximation and (4) is 
such that 

( ) t.-l~h l?(t)-bs~t~l < (2s+ 2)! s?1 
(34) 1 0(t) - (40itl dt <M 1h-s1 

i-1) 
= ~(S + 1)! 
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Choose h now, such that 

(35) h=23(1) 

therefore 

(36) h I dt < Ji;1) (Di I dth = 28+1 

Thus, 

(37) Ck - Ok | ( + 

which clearly tends to zero as s tends to infinity. 
Note: Although 1t is discontinuous at the end points of the subintervals i, this 

causes no problem. 
We now introduce a "data" or measurement error. That is to say, instead of 

b3(tj) interpolating to 0(tj) we consider the case when bi(tj) interpolates to 
(+(t1) 4 iij) with Uij given. 

Define 

(38) CD(t) - > 
?(t), 

where 

(39) -~i(t) = j (4(t3 ?E ij)w(t) __ ( tj )co(t) ? + ( tEij)w(t) 
j=O (t - tj))'(tj) j=o (t - tj)co(t) j=o (t -tj)(tj) 

Thus, 

(40) Ai(t) = cbi(t) + j (tE - 

Set 

(41) Ei = max3i IEij and -= maxim e,. 

Proceeding in an entirely analogous manner, where nlOW Ck is the approximate 
Fourier coefficient, we have 

~ ihL 

| Ck - Ck | -< E t | +(t) - b~~t)| dt (42) i (i-1 )h ih j w(t) 

( 42 ) < E A [+ji1)h ( t ) - j( t) - E jO (t -tc2(t) d t 

By summing the accumulated error over Ik I < N, we find 

(43S) u iig - ck h o (2N + 1t) i s o l h + e E of ea s 

Subdividing each of the i subintervals of length h by a set of equally spaced points, 
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with spacing q, i.e., 

(44) q=S + ? 

it can be shown that 

(45) jcv(t) hS 

(46) <1 1 

(46) '(t) I (s + 1)! q81 
and finally that 

(47) W(t) = 0(2812). 

Thus, 

(~~~~~232 (s8) / 8 (48) j? Ck -Ck I _ (2N + =8+1 M + 2 H(N, s). 
Ikl <N2 

Consider the function H(N, s). Let us minimize the error made with respect 
to s, the number of data points for a given truncation point N. We find then, in 
some sense, the best distribution of data points for a given truncation point. There- 
fore s is approximately given by 

(49) log (8M/e) 
log 2 

and (48) can be written as: 

(50) E 
N 

Ck _ (2N + 1) {M5 + V 8Me} = 9(2N +8) 

We now need to show that the approximating solutions, VN(X, t), are well-behaved, 
i.e., have the Holder property. 

Consider, 

|V(x,t) - VN(xt)| = | E Cke coshVik7r x 
Iki 2N+i 

+ (Ck - Ck)e'k t cosh V\Ak-w x 
(51)~~~~~~~~~~~~~~~~~~~~~~ IkI _<N 

(51) ~~~~~~< Ck cosh \I~k~r x 
IkI >N+1 

+ Z |ICk -Ck cosh Vik7r x. 
Ik I _<N 

Applying DeMoivre's Theorem, we find an upper bound for I cosh Vik7rx I. To 
insure convergence of the sum over I k ? N + 1 we are led to the condition 

(52) lxl?V . 

By algebraic manipulations [3], it can be shown that 

(53) | V(x, t) - VN(X, t) | _ 4eAeV-\N/e + Be2VN 
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where 

(54) A Me 

and 

(55) B= 4V2ME. 

Minimizing the right hand side of (53) with respect to N, for fixed values of e 

we find 

(56) [i g (2A)]2 
(+L1 

2 

Inserting this value of N in (53) we have 

(57) V(x, t) - VN(X, t) ? < DAI(4c+l)I(4e?2) 

where 
D = KC1I(2e~l) (e : 2e/(2e+1) 

D 
~e-l 

and where 

(58) k = [2(4e+1) + 22el/ (2e+l) and C 4 
2 

which proves that the numerical scheme is well-behaved with exponent 

- 4e + 2 

4. Numerical Example. For convenience in the numerical example we will con- 
sider the function 0(t) as an even function of t. In this case we have 

(59) VN(X, t) = f ?(t) dt + 4 E (f 4(t) cos krt dt) G(x, t, k) 

where 

G(x, t, k) = cosh (V2l x) cos (V2t x) cos k7rt 

- sinh (Vkr x) -I (V2kr sin tkrt. 

We can compute VN(X, t) from (59) by replacing +(t) by the appropriate Lagrange 
Interpolation polynomial 4(t). The two methods of solutions will be compared for 
the following problem, to find U such that 

Ut(x, t) = UXX(x, t) 

(60) U(it) = 1 for 0 < x < I 

U(xO) = 0 
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in the region satisfying 0 < x < 1 and t > 0. It can be verified [1] that the function 

(61) V(X, t) 1 + 2 e-(2n+1)27r2t/4 F(N, x) 
n=O 

where 

F( N X) [(1 )n''12 ]Cos 
( 2n + 1 )'X} F(AT~~(2) 

= 
)7r (2n ) 

is a solution to the boundary value problem defined by (60) satisfying, in addition, 
the condition 

(62) UX(O, t) = 0. 

The condition (62) makes this function a convenient choice against which to 
compare the results as computed by the method developed in this paper without too 
many additional manipulations. 

We now return to equation (61) in order to determine the bound M in complex 
(z, t) space. By means of a simple linear transformation on the space variable 
x -* x", and by setting 

(63) t 1 

with r a pure imaginary, we may write 

(64) V(x" t) - xf - 2 E e(nnl2)2 2tR( x") 
2 n=O 

where F(n, x") = 

[sin (2n + 1) x"] (-1). 

Consider the extension into the complex plane, i.e., let x" be continued into 
z = x" + iy, thus with (63) we have 

V(z, r) = [az - 41(Z q)] 
2 dz 

( 65 ) n=+oo 
(5 ( ( + )( +1 )ei[(n+1/2)2 1r2r+?(2n+l)z] 

2 no=-so 

where di1(z, q) is the Elliptic Theta function [11] and where we have made use of the 
functional equation for the Theta function [2]. 

Consider the doubly infinite sum, S, on the right hand side of (65). For con- 
vergence we require that Ref(z) < 0, where f(z) is the exponent in S. 

n=+oo 

S j ? E (2n + 1)e-(n+1/2)272t-(2?+l)y 

n=-1 

(66) 12n + 1 e-(n+1/2)27r2t-(2n+1)y 

n=-oo 

+ Z (2n + 1) e-(n+112)272t-(2n+l)y + -(7r2t/4)-y 
n=1 
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The convergence condition implies that 
2 72rt 

(67) (a) _ - - < 0 

(67' (b) -(2n + - )27r2t _(2n + l)y < -(2n + 1)6(t) 
4 

where 6(t) is to be specified and 6(t) > 0. Therefore 

(68) 2 Z (2n + )-9+)( + =a 
n=1 

where M is a bound for V(z, t) I in R. Making use of the integral test we find 

1?? -~~(2n+1) 3(t)l -3(t) 3 1 1 
(69) Z (2n + 1)e e 26(t) + 2[6(t)]21 

If we arbitrarily choose 6(t) = t, and consider t = 10-2, then we find that the bound 
M3 for V(z, t) in the given cube in (z, t) space is 

(70) Mi s 15,680. 

Clearly, this is not a very sharp bound, but for our purposes it is sufficient. 
Returning to the expressions for A, B, N, s, h which were given previously, we 

find that for M as given by (70) we have 

(71) N 20, A 49,548, B 1.24, s 35, h 
The values used for (O(tj) - e) were the values of V(x, t) for x = 0 and t = t 
and where I(tj) ? E1 < lY> 

The values of V20(xi, ti) versus V(x , tj) and I V20(xi , t1) - V(xi , tj) I are 
tabulated in Table 1, where V(xi, tj) are the values calculated from (61). 

5. Remarks. The value of (1/h) implies that we need to evaluate 288 integrals 
each containing in its interior a total of s = 35 points, then we need to sum this 
over N = 20 terms and evaluate the result over a specified grid. The enormous 
number of calculations involved makes imperative the use of a digital computer 
such as the IBM 7090 on which this problem was programmed. In spite of the speed 
of this machine it was estimated that to evaluate this number of integrals at so many 
points, making use of Simpson's Rule with an accuracy of 10-3, would require 
approximately 180 minutes of running time. In order to conserve time on the 7090 
the total number of integrals used was 32, with each integral containing 7 data 
points in its interior. The time for such a computation was approximately 4 minutes. 
Some typical numerical results are tabulated in the accompanying Table 1. 

We note that in the main body of this paper we have assumed that the function 
+O(t) is a function of class two and on this basis we found that we needed to restrict 

our x domain to values such that I x I< >. In observing the tabulated data, 

the results are valid for a much larger range of values of x. This is due to the fact 
that the function 0(t), in the case actually computed, satisfies a somewhat sharper 
upper bound than the bound (2n) ! M and thus in the computation of the trunca- 
tion error: >3iki ?N+l, we need not be as restrictive with respect to x to insure 
convergence to zero. 
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TABLE 1 

V(X, T, 20) T X V(X, T, 20) V(X, T) V(X, T) 

0.050 
0.050 0.003848 0.003562 .000286 
0.100 0.005246 0.004931 .000315 
0.150 0.007802 0.007466 .000336 
0.200 0.011864 0.011560 .000304 
0.250 0.017946 0.017783 .000163 
0.300 0.026739 0.026896 .000157 
0.350 0.039131 0.039852 .000721 
0.400 0.056222 0.057789 .001567 
0.450 0.079321 0.081995 .002674 
0.500 0.109927 0.113848 .003921 
0.550 0.149684 0.154730 .005046 
0.600 0.200296 0.205904 .005608 
0.650 0.263395 0.268382 .003987 
0.700 0.340356 0.342782 .002426 
0.750 0.432060 0.429195 .002865 
0.800 0.538593 0.527089 .011504 
0.850 0.658921 0.635256 .023665 
0.900 0.790542 0.751830 .038712 
0.950 0.929186 0.874367 .054819 
1.000 1.068605 1.000000 .068605 
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